3.111 \(\int \frac {a g+e x+f x^3-c g x^4}{(a+b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=69 \[ \frac {g x}{\sqrt {a+b x^2+c x^4}}-\frac {-2 a f+x^2 (2 c e-b f)+b e}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \]

[Out]

g*x/(c*x^4+b*x^2+a)^(1/2)+(-b*e+2*a*f-(-b*f+2*c*e)*x^2)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {1673, 1588, 1247, 636} \[ \frac {g x}{\sqrt {a+b x^2+c x^4}}-\frac {-2 a f+x^2 (2 c e-b f)+b e}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(a*g + e*x + f*x^3 - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(g*x)/Sqrt[a + b*x^2 + c*x^4] - (b*e - 2*a*f + (2*c*e - b*f)*x^2)/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4])

Rule 636

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2*(b*d - 2*a*e + (2*c*
d - b*e)*x))/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 1588

Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*x^(p - q
+ 1)*Qq^(m + 1))/((p + m*q + 1)*Coeff[Qq, x, q]), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps

\begin {align*} \int \frac {a g+e x+f x^3-c g x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\int \frac {x \left (e+f x^2\right )}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx+\int \frac {a g-c g x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\\ &=\frac {g x}{\sqrt {a+b x^2+c x^4}}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {e+f x}{\left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=\frac {g x}{\sqrt {a+b x^2+c x^4}}-\frac {b e-2 a f+(2 c e-b f) x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(a*g + e*x + f*x^3 - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 92, normalized size = 1.33 \[ \frac {\sqrt {c x^{4} + b x^{2} + a} {\left ({\left (b^{2} - 4 \, a c\right )} g x - {\left (2 \, c e - b f\right )} x^{2} - b e + 2 \, a f\right )}}{{\left (b^{2} c - 4 \, a c^{2}\right )} x^{4} + a b^{2} - 4 \, a^{2} c + {\left (b^{3} - 4 \, a b c\right )} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

sqrt(c*x^4 + b*x^2 + a)*((b^2 - 4*a*c)*g*x - (2*c*e - b*f)*x^2 - b*e + 2*a*f)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 -
 4*a^2*c + (b^3 - 4*a*b*c)*x^2)

________________________________________________________________________________________

giac [B]  time = 2.10, size = 166, normalized size = 2.41 \[ \frac {{\left (\frac {{\left (b^{3} f - 4 \, a b c f - 2 \, b^{2} c e + 8 \, a c^{2} e\right )} x}{b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}} + \frac {b^{4} g - 8 \, a b^{2} c g + 16 \, a^{2} c^{2} g}{b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}}\right )} x + \frac {2 \, a b^{2} f - 8 \, a^{2} c f - b^{3} e + 4 \, a b c e}{b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}}}{\sqrt {c x^{4} + b x^{2} + a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

(((b^3*f - 4*a*b*c*f - 2*b^2*c*e + 8*a*c^2*e)*x/(b^4 - 8*a*b^2*c + 16*a^2*c^2) + (b^4*g - 8*a*b^2*c*g + 16*a^2
*c^2*g)/(b^4 - 8*a*b^2*c + 16*a^2*c^2))*x + (2*a*b^2*f - 8*a^2*c*f - b^3*e + 4*a*b*c*e)/(b^4 - 8*a*b^2*c + 16*
a^2*c^2))/sqrt(c*x^4 + b*x^2 + a)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 63, normalized size = 0.91 \[ \frac {4 a c g x -b^{2} g x -b f \,x^{2}+2 c e \,x^{2}-2 a f +b e}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x)

[Out]

(4*a*c*g*x-b^2*g*x-b*f*x^2+2*c*e*x^2-2*a*f+b*e)/(c*x^4+b*x^2+a)^(1/2)/(4*a*c-b^2)

________________________________________________________________________________________

maxima [A]  time = 0.68, size = 94, normalized size = 1.36 \[ -\frac {\sqrt {c x^{4} + b x^{2} + a} {\left ({\left (2 \, c e - b f\right )} x^{2} + b e - 2 \, a f - {\left (b^{2} g - 4 \, a c g\right )} x\right )}}{{\left (b^{2} c - 4 \, a c^{2}\right )} x^{4} + a b^{2} - 4 \, a^{2} c + {\left (b^{3} - 4 \, a b c\right )} x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x^4+f*x^3+a*g+e*x)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

-sqrt(c*x^4 + b*x^2 + a)*((2*c*e - b*f)*x^2 + b*e - 2*a*f - (b^2*g - 4*a*c*g)*x)/((b^2*c - 4*a*c^2)*x^4 + a*b^
2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)

________________________________________________________________________________________

mupad [B]  time = 0.98, size = 62, normalized size = 0.90 \[ -\frac {g\,b^2\,x+f\,b\,x^2-e\,b-2\,c\,e\,x^2-4\,a\,c\,g\,x+2\,a\,f}{\left (4\,a\,c-b^2\right )\,\sqrt {c\,x^4+b\,x^2+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*g + e*x + f*x^3 - c*g*x^4)/(a + b*x^2 + c*x^4)^(3/2),x)

[Out]

-(2*a*f - b*e + b*f*x^2 - 2*c*e*x^2 + b^2*g*x - 4*a*c*g*x)/((4*a*c - b^2)*(a + b*x^2 + c*x^4)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \left (- \frac {a g}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \left (- \frac {e x}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \left (- \frac {f x^{3}}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\right )\, dx - \int \frac {c g x^{4}}{a \sqrt {a + b x^{2} + c x^{4}} + b x^{2} \sqrt {a + b x^{2} + c x^{4}} + c x^{4} \sqrt {a + b x^{2} + c x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c*g*x**4+f*x**3+a*g+e*x)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

-Integral(-a*g/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*x**4) + c*x**4*sqrt(a + b*x**2 + c*x*
*4)), x) - Integral(-e*x/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*x**4) + c*x**4*sqrt(a + b*x
**2 + c*x**4)), x) - Integral(-f*x**3/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*x**4) + c*x**4
*sqrt(a + b*x**2 + c*x**4)), x) - Integral(c*g*x**4/(a*sqrt(a + b*x**2 + c*x**4) + b*x**2*sqrt(a + b*x**2 + c*
x**4) + c*x**4*sqrt(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________